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Feasibility of graphic determination of stress from fault/slip data
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Abstract
The equation describing 2D sections through an ellipsoid is similar in formulation to the equation describing fault/slip directions in relation to
the stress tensor, thus enabling the conversion between them. So, the existing graphic method for determining the optical indicatrix or fabric
ellipsoid can be used to infer stress from fault/slip data if they are converted to sectional measurements. After conversion, fault/slip data are
displayed on a stereogram, and then are directly used to determine the poles to the circular sections of the stress ellipsoid, from which the el-
lipsoid is readily reconstructed. This is of importance for visual appreciation in stress inversion. However, the graphic method is only applicable
to cozonal sectional measurements, and is unable to discriminate spurious data. In order to make up for this deficiency, a computer-aided method
has been developed in this paper, and its feasibility illustrated by using an example.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In stress inversion using striated faults, fault/slip data mea-
sured at outcrop are used to infer the palaeostress that pro-
duced or reactivated the faults observed. Both the principal
directions and the stress ratio are obtained in this way, thus
rendering it the most complete stress gauge among structural
analysis techniques (Ramsay and Lisle, 2000). Conventionally,
only single-phase fault/slip data are used, as required by the
assumption of a homogeneous palaeostress field. This applica-
bility is very limited, because the collected data are commonly
polyphase, due to variability of the tectonic stress field through
geologic time. A recent approach (Blenkinsop et al., 2006) is
to extend this conventional technique to polyphase fault/slip
data in a variety of ways. The difficulty in such extension is
the nonlinearity of the inversion and the dimensionality of
the parameter space. The nonlinearity may be reduced to
a great deal by adopting Fry’s (1999) transformation to six di-
mensional parameter space, in which single-phase fault/slip
data tend to be distributed in a hyperplane to which the
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solution of stress is normal. The inversion is hence simplified
to look for all such hyperplanes among the datum vectors,
each of which encapsulates both fault orientation and slip ori-
entation (Shan et al., 2003). However, in the case of polyphase
data, there generally exist many local minima in the parameter
space that would prevent most existing stress inversion algo-
rithms that proceed by minimizing their peculiar objective
functions from reaching the global minimum (Shan et al.,
2008b). This issue is further aggravated by the rather large
dimension of the parameter space.

Recently, Shan et al. (2008a) deduced a simple linear
equation for sectional measurements of stretching lineation.
They assumed that stretching lineation is coincident with
the long axis of a fabric ellipse, and that the fabric ellipsoid
is identical to the strain ellipsoid. On that basis, they solved
the equation, under an auxiliary constraint, for the relative
strain ellipsoid. They noticed the similarity in formulation be-
tween strain inversion and stress inversion. Accordingly, it
seems theoretically possible to transform fault/slip data and
sectional measurements of stretching lineation to each other
in some way.

It is confirmed by this short communication that there exists
such a transformation between the two kinds of data. This
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enables use of the graphic method for determining strain ellip-
soid from sectional measurements (Lisle, 1976) to invert stress
from fault/slip data. In this way, fault/slip data after conversion
can be displayed on a stereogram, familiar to any structural
geologist. They are directly used to determine the poles to
the circular sections of the stress ellipsoid, from which the
stress ellipsoid/tensor can be restored. Visual appreciation of
the homogeneity or single-phase nature of a given data set is
therefore readily achieved.

A similar idea for unifying the stress and the strain construc-
tion methods can be found in the papers of Fry (1992), Lisle
(1998) and others (see their cited authors) who adapted the
graphic methods, that they had used for deriving the direction
of shear stress, so as to determine analogously the direction
of finite shear strain. But all this work is based upon the knowl-
edge of the stress or the strain, in the opposite direction to the
goal of this study.

2. Theory

In this section, we will introduce the recent study of Shan
et al. (2008a,b), and encourage interested readers to refer to
their papers for more detailed explanation.

Conventionally, a strain ellipsoid is defined as a quadric
surface centered at the origin in the Cartesian system
(Fig. 1). It is described by the following equation: (e.g.,
Owens, 1984; Robin, 2002; Shan et al., 2008b)
½ x0 y0 �
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where x, y and z are the coordinates of a point on the
ellipsoid in terms of the X-, Y- and Z-axis, respectively,
and bij (i, j¼ 1, 2, 3) is an element of the shape matrix.
As the shape matrix is symmetrical, we need to determine
only six unknown independent elements, bij (i, j¼ 1, 2, 3;
i� j ). The determination may be made in many ways, on
the basis of various types of sectional measurements of the
strain ellipses observed on planar sections through the strain
ellipsoid (Shan et al., 2008b).

In this paper we are only interested in the direction of the
long axis of the elliptical section. Measurements required
are the dip direction (a) and dip angle (b) of the section plane,
and the pitch (q) of the long axis of the sectional ellipse of the
3-D ellipsoid. The pitch is defined as the angle between the
long axis of the strain ellipse and the westwards or eastwards
strike of the plane dipping towards the south or north (Fig. 1).

A simple expression of the strain ellipse on the plane can be
obtained through a series of rotations that transform the plane
into a horizontal one where the long axis of the strain ellipse is
aligned with the X-axis. This manipulation can be imple-
mented by rotating around the Z-axis with an angle of �a,
around the Y-axis with an angle of �b, and finally around
the Z-axis with an angle of q�90�. Let T stand for the inverse
manipulation of these rotations that defines the relationship
between the old and the new coordinate systems:
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Applying this transformation to Eq. (1) and letting z0 ¼ 0
leads to the expression of the strain ellipse in the new coordi-
nate system as follows:
where k is the scale parameter, which is different for each in-
dividual section of the strain ellipsoid.

The new coordinate system is specified as having the sec-
tion ellipse symmetrical to its axes, so the matrix in Eq. (4)
must have zero for its off-diagonal elements. Therefore, we
have, specifying the off-diagonal elements, the following lin-
ear equation.
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By its definition, the matrix T is an orthogonal matrix, and,
accordingly, it consists of orthogonal rows. Hence, [t11, t21, t31]
and [t12, t22, t32], are perpendicular to each other. Eq. (5)
constitutes the basis of Shan et al.’s (2008a) using this kind
of sectional measurement to determine the relative strain ellip-
soid in a rock.



Table 1

A set of four fabric measurements from Lisle (1976) (see his third example)

and its converted fault/slip data

Sectional measurements (�) Converted fault/slip data (�)

Exposure planes Fabric traces Fault planes Slip lines

Dip

direction

Dip

angle

Bearing Plunge Dip

direction

Dip

angle

Bearing Plunge

133 90 223 40 43 50 313 0

35 90 305 47 125 43 35 0

90 90 180 9 0 81 270 0

181 90 271 64 91 26 1 0Measured planar surface

X (N)

Y (E)

Z

Fig. 1. Elements of strain measurement made on the planar surface in the Car-

tesian coordinate system where the X-axis is directed towards the north, the Y-

axis towards the east, and the Z-axis upwards (Shan et al., 2008a). The blank

rectangle, marked by three dashed lines and one thick line, represents a part of

the horizontal (XeY ) plane. The gray rectangle marked by thick lines repre-

sents the plane where the strain ellipse is measured. See the text and Table

1 for symbol definitions.

O2
O1

L

N

H

Fig. 2. An illustration of Fresnel’s theorem on a stereogram. A section plane

has a normal (N ) and a fabric trace (L). O1 and O2 are poles to circular sec-

tions of the fabric ellipsoid. The :O1NO2 is bisected by the plane containing

N and L. The plane H is symmetrical about a vertical plane along strike to the

plane NL. Dotted region bounded by H can be eliminated because it does not

contain the two poles.
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On the other hand, it is assumed in stress inversion that
there is parallelism between the maximum shear traction on
the fault plane and the slip line. This important assumption, al-
though it remains in dispute for reactivated faults (Pollard and
Rubin, 1993; Nieto-Samaniego, 1999), leads to the following
basic equation (see Angelier, 1979; Shan et al., 2003).

½n1 n2 n3 �
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3
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where ni (i¼ 1, 2, 3) is an element of the normal vector to the
fault plane, li (i¼ 1, 2, 3) is an element of the unit vector on
the fault plane and perpendicular to the slip line, and sij

(i, j¼ 1, 2, 3) is an element of the unknown stress tensor.
The vectors n and l are perpendicular to each other, and sij¼ sji.

There is no difference in formulation between Eqs. (5) and
(6), suggesting equivalence between the shape matrix and the
stress tensor, in some sense. This enables us to convert the two
types of data, sectional measurements of stretching lineations
and fault/slip data, to each other in a way that leads to no dif-
ference in magnitude between the estimated shape matrix and
the estimated stress tensor. Such conversion is justified by the
fact that both the estimate of strain and the estimate of stress
are relative in magnitude. Sectional measurements of the strain
ellipse are only used to determine the relative strain ellipsoid
(Shan et al., 2008a), and fault/slip data to determine the rela-
tive stress tensor (Fry, 1999; Shan et al., 2003).

In a way similar to that in Eqs. (2) and (3), we define from
Eq. (6) an orthogonal transformation matrix T0 as follows.

T0 ¼

2
4 l1 n1 s1

l2 n2 s2

l3 n3 s3

3
5 ð7Þ

where si (i¼ 1, 2, 3) is an element of the slip line on the fault
plane.
As is thereby required, T¼ T0. According to this equation, we
calculate from fault/slip data their counterparts in the format of
section measurements of strain ellipse, or from sectional
measurements of strain ellipse their counterparts in the format
of fault/slip data. For example, the converted fault/slip data
listed in Table 1 are calculated in the way described above
from the third fabric example of Lisle (1976).

Nevertheless, for either a sectional measurement or a fault/
slip datum, we may have more than one counterpart of it be-
cause there are many ways to define the orthogonal matrix
T0. Each of these counterparts gives rise to similar estimate
of strain or of stress.

3. Graphic determination

In the way described above, a set of measured fault/slip data
may be converted into sectional measurements of strain ellipse.
Such sectional measurements are solved for the relative strain
ellipsoid that, theoretically speaking, has no difference in mag-
nitude from the relative stress tensor directly obtained from the
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fault/slip data themselves. This is an important conclusion
drawn in this paper. This makes it possible to use some ways
peculiar to sectional measurements of strain ellipse (e.g., Lisle,
1976) to determine the stress recorded by fault/slip data.

The idea of graphic determination can be derived from
Tocher (1964) and others, who used a minimal number of
four independent cozonal extinction measurements to deter-
mine stereographically the three axes of the optic indicatrix.
It was later applied to fabric analysis by Lisle (1976). It is
worthwhile to note that there is no essential difference in for-
mulating sectional measurements among the optic indicatrix,
the fabric ellipsoid and the strain ellipsoid. The determination
was based upon Fresnel’s theorem in optical crystallography.
In the theorem (see Tocher, 1964; Lisle, 1976), plane NL
that contains the normal N to the section plane and the elimi-
nation/trace/lineation on the plane (L) bisects the angle be-
tween planes NO1 and NO2, namely, :LNO1¼:LNO2,
where O1 and O2 are the poles to the circular sections in the
optical indicatrix/fabric ellipsoid/strain ellipsoid (Fig. 2).

Tocher (1964) developed for this purpose the progressive
elimination method, which is readily realized by hand using
a stereonet. Subsequently, Lisle (1976) used it to determine
the fabric ellipsoid in a rock. The following introduction to
the method is based upon fabric analysis. First of all, one needs
to distinguish whether the distribution of the fabric traces is
equatorial or polar, by inspecting their plots on the stereogram,
and then replace only the fabric traces in the equatorial distribu-
tion by vectors that are perpendicular to them on the section
planes.

Let us draw a plane H, symmetrical to the plane (NL) about
a vertical plane containing the strike (Fig. 2), such that the two
planes, H and NL, dip towards each other, and have the same
dip angle. In the light of Fresnel’s theorem, the two poles to
the circular sections, O1 and O2, do not locate in the dotted re-
gion bounded by plane H and the horizon. Therefore, the dot-
ted region can be eliminated from the vector space in which to
a

Fig. 3. For an angular width of 3�, stereograms showing (a) the mesh of the vector

third example of Lisle (1976). The four-data example is listed in Table 1. Lower he
search for the poles. With increase of measurements taken into
account, the vector space is more greatly reduced in this way.
However, the reduction from this simple elimination will even-
tually lead to one or more relatively wide acceptable regions,
within which we cannot determine the loci of O1 and O2 to
a satisfactory degree. As a remedy, some accommodation con-
straints by these measurement themselves must be added dur-
ing the progressive elimination to reduce the accepted region
further. Including more measurements generally leads to better
determination of the loci, but makes the process much more
complicated and time-consuming.

Once the loci of O1 and O2 are determined in the way de-
scribed above, they are used together with the fault slip sense
to calculate the three strain principal directions and their
relative magnitudes (Lisle, 1976). The intermediate principal
direction is normal to the great circle through O1 and O2,
which are bisected by both the maximum and the minimum
principal directions. Stress ratio can be calculated from the
angle between the two loci. However, there exist two options
for locating the maximum or the minimum principal direction,
and for defining the angle in the above equation as either
acute or obtuse, mutually complementary. Resolving these
options requires the knowledge of the fault slip senses.
4. Computer-aided display

Sectional measurements converted in the above-mentioned
way from fault/slip data are generally not cozonal and verti-
cally dipping. This brings difficulty in the direct application
of the progressive elimination method (Tocher, 1964), which
primarily deals with cozonal sectional measurements. For
each sectional measurement not of vertical dip, we need to
rotate the section plane to dip vertically, and then reduce the
accepted region in the vector space, and finally retro-rotate
both the rotated plane and the accepted region to the initial
b 4

2
3

space, and (b) the result of applying the method proposed in this paper to the

misphere and equal-area projection. Northwards is towards the top of the page.



Table 2

A set of 10 fault/slip data from Shan et al. (2003) (see the first 10 data of the first subset in their appendix) and their converted fault/slip data

Fault/slip data (�) Converted sectional measurements (�)

Fault planes Slip lines Section planes Lineations

Dip direction Dip angle Bearing Plunge Dip direction Dip angle Bearing Plunge

0.01 4.88 352.62 4.84 172.62 85.16 180.01 85.12

216.49 63.08 163.70 49.98 343.70 40.02 36.49 26.92

348.46 10.93 353.22 10.90 173.22 79.10 168.46 79.06

185.39 23.45 191.65 23.33 11.65 66.67 5.39 66.55

94.65 48.03 57.63 41.60 237.63 48.40 274.64 41.97

32.24 34.08 354.25 28.07 174.25 61.93 212.24 55.92

209.60 54.05 177.22 49.35 357.22 40.65 29.60 35.95

213.09 30.78 202.06 30.31 22.06 59.69 33.09 59.22

315.59 84.32 226.99 13.77 46.99 76.23 135.59 5.68

261.44 75.15 190.82 51.39 10.82 38.61 81.43 14.85

0
1
2
3
4
5
6
7
8
9
10

O2

O1

1

23

Fig. 4. Result on a stereogram of applying the proposed method to the first 10

data (Table 2) of the first single-phase subset from Shan et al. (2003) (see their

appendix), using an angular width of 2�. Contours were drawn by using an in-

terpolation of natural neighborhood. O1 and O2 are poles to circular sections of

the stress ellipsoid. The calculated principal stress directions are shown by

a square (s1), circle (s2) and triangle (s3). Lower hemisphere and equal-

area projection. Northwards is towards the top of the page.
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state. It is very time-consuming to carry out this process by
hand, and very vulnerable to careless mistakes.

In addition, Tocher’s (1964) method is most likely to fail
in searching for the loci of O1 and O2, if there exist a few
spurious data, because the method itself cannot discriminate
spurious data from the entire set. It is, however, sometimes
possible to solve this problem by careful inspection of each
datum on a stereogram, but doing so takes much more
time and energy.

For these reasons, we developed in this paper a computer-
aided method for the same purpose, in which a grid search is
used to look for the loci of the poles that account for the largest
number of data. The procedure of this new method is described
as follows:

(1) evenly mesh the vector space for a certain angular width,
3� in Fig. 3a, for instance, from which the best pair of
poles, O1 and O2 will be looked for in the following steps,

(2) for each node of the mesh, look by grid search for another
node that under a certain angular limit (in this paper, the
same value as the angular width) can account for the larg-
est number of sectional measurements when the two nodes
are considered as the poles to the section ellipses, and
mark the locus of each node on the stereogram with this
number,

(3) look for the nodes having the maximum marked number,
(4) accept the pairs of nodes that account for the same data as

the best solutions of the poles; otherwise, carefully inspect
and delete the spurious data, and return to step 2,

(5) calculate the mean locus of accepted poles in a region, and
(6) for converted data, restore from the known pair of poles

two possible solutions of the relative strain/stress tensor,
principal directions and their relative magnitudes, and
use the observed slip senses/lineations to determine the
real solution; or for primary sectional measurements, just
restore the strain principal directions and their relative
magnitudes from the known pole pair.

Fig. 3b shows the result of applying our new method to the
third example (Table 1) of Lisle (1976). Regions of a number
of four fit data in each node are closely coincident with the
eventually accepted regions by the elimination method (see
Fig. 5 of Lisle, 1976). For the sake of graphical display on
the stereogram, we used an angular width of 3� for this exam-
ple, although a finer mesh will lead to a much closer match
between them.
5. Application

The first 10 artificial fault/slip data (Table 2) of the first
single-phase subset from Shan et al. (2003) (see their ap-
pendix) are taken in this section and used as an example.
Applying the proposed method to them gives rise to the re-
sults shown in Fig. 4 and listed in Tables 2 and 3. For an



Table 3

Comparison between the prescribed and the determined stress tensors from the example listed in Table 2

Stress principal directions (�) Stress ratio

Maximum Intermediate Minimum

Bearing Plunge Bearing Plunge Bearing Plunge

Prescribed 180.00 10.00 89.00 5.65 329.93 78.48 0.667

Estimated 179.91 10.69 88.94 5.12 333.73 78.12 0.663
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assigned angular width of 2�, only three nodes of the mesh
can account for all 10 data, and hence the loci of the two
poles to circular sections are well determined (Fig. 4).
This is simply ascribed to there being no inclusion of mea-
surement errors in producing the artificial data under a cer-
tain prescribed stress. There is almost no difference between
the prescribed and the determined stress tensors (Table 3),
thus demonstrating the feasibility of the method developed
in this paper.
Appendix
A list of symbols and their definitions

Symbols Definitions Comments

x, y, and z Coordinates of a point on the

ellipsoid in the real state.

Eqs. (1) and (2).

x0, y0, and z0 Coordinates of a point on the

ellipsoid in the rotated

(reference) state.

Eqs. (2) and (4).

bij Elements of a shape matrix. i, j¼ 1, 2, 3; Eqs. (1),

(4) and (5).

31, 32, and 33 Magnitudes of the principal

axes of an ellipsoid.

31� 32� 33> 0

a and b Dip direction (azimuth) and

dip angle of a certain

measured planar surface.

Eq. (3) and Fig. 1.

q Pitch of the long axis of a

strain ellipse on the planar

surface.

Eq. (3) and Fig. 1.

T Inverse rotation matrix Eqs. (2) and (3).

tij Elements of inverse rotation

matrix.

i, j¼ 1, 2, 3; Eqs. (2),

(4) and (5).

k Elliptical parameter. Eq. (4).

sij Elements of a stress tensor. i, j¼ 1, 2, 3; Eq. (6).

si Principal stress directions. i¼ 1, 2, 3.

ni Elements of the normal to a

fault plane.

i¼ 1, 2, 3; Eqs. (6)

and (7).

li Elements of the unit vector on

a fault plane that is

perpendicular to the slip line.

i¼ 1, 2, 3; Eqs. (6)

and (7).

si Element of the slip line on a

fault plane

i¼ 1, 2, 3; Eq. (7).

T0 Transformation matrix. Eq. (7).

Oi Pole to circular section of an

ellipsoid.

i¼ 1, 2; Figs. 2 and 4.

N Normal to a section plane. Fig. 2

L Fabric trace or lineation on a

section plane.

Fig. 2

NL Plane containing N and L. Fig. 2

H Plane symmetrical, about a

vertical plane along the

strike, to the plane NL.

Fig. 2
6. Conclusions and remarks

There is no difference in formulation between equations de-
scribing sectional measurements of strain ellipse and fault/slip
data, or Eqs. (5) and (6). This makes it possible to convert be-
tween the one kind and the other. Therefore, we can use the
graphic method that has been proposed for determining the
optical indicatrix or the fabric ellipsoid (Tocher, 1964; Lisle,
1976) to infer stress from fault/slip data if they are converted
in some way to sectional measurements. Making this determi-
nation using a stereonet by hand is a little cumbersome but
exciting.

However, Tocher’s (1964) method is based just upon cozonal
sectional measurements, and is unable to discriminate spurious
data, if there are any, from the entire set. These would prohibit
application of the graphic method to any set of converted fault/
slip data that are generally not cozonal and that probably
contain some spurious data. A computer-aided method has
been developed in this paper to make up for this deficiency. It
uses a grid search to look for the accepted regions of the poles
to circular sections of the strain ellipsoid. A well-controlled
example was taken to show the applicability and the feasibility
of this new method.

After the conversion, fault/slip data can be displayed on
a stereogram e a method familiar to all structural geologists e
to determine the poles of circular sections of the stress ellip-
soid. We can visualize what we do in this way. This is of
importance in stress inversion, because nearly all existing al-
gorithms proceed either in hyperspace (for example, Fry’s,
1999 sigma space has a dimension of six) or by procedures
in which the dimensionality of the problem is opaque. Visual
appreciation is thus readily made to appraise the homogeneity
of a given data set. It can be used to separate polyphase fault/
slip data into many single-phase subsets, instead of adopting
some stopping rule. We believe that this will open a new direc-
tion for palaeostress analysis.
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